Linear Response Theory for Magnetic Schrödinger Operators in Disordered Media

نویسنده

  • JEFFREY H. SCHENKER
چکیده

We justify the linear response theory for an ergodic Schrödinger operator with magnetic field within the non-interacting particle approximation, and derive a Kubo formula for the electric conductivity tensor. To achieve that, we construct suitable normed spaces of measurable covariant operators where the Liouville equation can be solved uniquely. If the Fermi level falls into a region of localization, we recover the well-known Kubo-St̆reda formula for the quantum Hall conductivity at zero temperature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi-Static Theory for Uniaxial Chiral Omega Media

The problem of unbounded uniaxial chiral omega media in the presence of both static electric and magnetic point charges is investigated. For this purpose scalar electric and magnetic potentials in these media are introduced. Using these potentials, the corresponding electric and magnetic fields are determined. The similar problem of static electric and magnetic current sources with the goal of ...

متن کامل

On the Equivalence of Matrix Differential Operators to Schrödinger Form

We prove a generalization to the case of s × s matrix linear differential operators of the classical theorem of E. Cotton giving necessary and sufficient conditions for equivalence of eigenvalue problems for scalar linear differential operators. The conditions for equivalence to a matrix Schrödinger operator are derived and formulated geometrically in terms of vanishing conditions on the curvat...

متن کامل

Dynamic response determination of viscoelastic annular plates using FSDT – perturbation approach

In this paper, the transient response of a viscoelastic annular plate which has time-dependent properties is determined mathematically under dynamic transverse load. The axisymmetric conditions are considered in the problem. The viscoelastic properties obey the standard linear solid model in shear and the bulk behavior in elastic. The equations of motion are extracted using Hamilton’s principle...

متن کامل

Measures of Fermi surfaces and absence of singular continuous spectrum for magnetic Schrödinger operators

Fermi surfaces are basic objects in solid state physics and in the spectral theory of periodic operators. We define several measures connected to Fermi surfaces and study their measure theoretic properties. From this we get absence of singular continuous spectrum and of singular continuous components in the density of states for symmetric periodic elliptic differential operators acting on vecto...

متن کامل

Spectral Gaps for Periodic Schrödinger Operators with Strong Magnetic Fields

We consider Schrödinger operators H = (ih d + A)∗(ih d + A) with the periodic magnetic field B = dA on covering spaces of compact manifolds. Under some assumptions on B, we prove that there are arbitrarily large number of gaps in the spectrum of these operators in the semiclassical limit of strong magnetic field h → 0.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004