Linear Response Theory for Magnetic Schrödinger Operators in Disordered Media
نویسنده
چکیده
We justify the linear response theory for an ergodic Schrödinger operator with magnetic field within the non-interacting particle approximation, and derive a Kubo formula for the electric conductivity tensor. To achieve that, we construct suitable normed spaces of measurable covariant operators where the Liouville equation can be solved uniquely. If the Fermi level falls into a region of localization, we recover the well-known Kubo-St̆reda formula for the quantum Hall conductivity at zero temperature.
منابع مشابه
Quasi-Static Theory for Uniaxial Chiral Omega Media
The problem of unbounded uniaxial chiral omega media in the presence of both static electric and magnetic point charges is investigated. For this purpose scalar electric and magnetic potentials in these media are introduced. Using these potentials, the corresponding electric and magnetic fields are determined. The similar problem of static electric and magnetic current sources with the goal of ...
متن کاملOn the Equivalence of Matrix Differential Operators to Schrödinger Form
We prove a generalization to the case of s × s matrix linear differential operators of the classical theorem of E. Cotton giving necessary and sufficient conditions for equivalence of eigenvalue problems for scalar linear differential operators. The conditions for equivalence to a matrix Schrödinger operator are derived and formulated geometrically in terms of vanishing conditions on the curvat...
متن کاملDynamic response determination of viscoelastic annular plates using FSDT – perturbation approach
In this paper, the transient response of a viscoelastic annular plate which has time-dependent properties is determined mathematically under dynamic transverse load. The axisymmetric conditions are considered in the problem. The viscoelastic properties obey the standard linear solid model in shear and the bulk behavior in elastic. The equations of motion are extracted using Hamilton’s principle...
متن کاملMeasures of Fermi surfaces and absence of singular continuous spectrum for magnetic Schrödinger operators
Fermi surfaces are basic objects in solid state physics and in the spectral theory of periodic operators. We define several measures connected to Fermi surfaces and study their measure theoretic properties. From this we get absence of singular continuous spectrum and of singular continuous components in the density of states for symmetric periodic elliptic differential operators acting on vecto...
متن کاملSpectral Gaps for Periodic Schrödinger Operators with Strong Magnetic Fields
We consider Schrödinger operators H = (ih d + A)∗(ih d + A) with the periodic magnetic field B = dA on covering spaces of compact manifolds. Under some assumptions on B, we prove that there are arbitrarily large number of gaps in the spectrum of these operators in the semiclassical limit of strong magnetic field h → 0.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004